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INVARIANT SOLUTIONS OF THE THERMAL-DIFFUSION EQUATIONS

FOR A BINARY MIXTURE IN THE CASE OF PLANE MOTION

UDC 519.46:533.375I. I. Ryzhkov

The group properties of the thermal-diffusion equations for a binary mixture in plane flow are stud-
ied. Optimal systems of first-and second-order subalgebras are constructed for the admissible Lie
operator algebra, which is infinite-dimensional. Examples of the exact invariant solutions are given,
which are found by solving ordinary differential equations. Exact solutions are found that describe
thermal diffusion in an inclined layer with a free boundary and in a vertical layer in the presence of
longitudinal temperature and concentration gradients. The effect of the thermal-diffusion parameter
on the flow regime is studied.
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Introduction. Thermal diffusion is molecular transfer of material due to the presence of a temperature
gradient in the medium (liquid solution or gas mixture). In the case of thermal diffusion, the components have dif-
ferent concentrations in the regions of elevated and decreased temperature. The presence of concentration gradients
results in ordinary diffusion. A steady state is established when the diffusion and thermal-diffusion processes com-
pensate for each other (i.e., the process of separation of the mixture components is compensated by the process of
their mixing). In practice, a frequently occurring case is normal thermal diffusion, in which the heavier components
move to the colder regions and the lighter components pass to the more heated regions. In some cases, there may
be anomalous thermal diffusion, in which the direction of motion of the components is opposite.

The present paper considers a model for the convective motion of a binary mixture taking into account
thermal diffusion. The model is based on the Navier–Stokes equations supplemented by diffusion and heat-transfer
equations. The Oberbeck–Boussinesq approximation, intended to describe convective flows under natural earth con-
ditions, is used. It is assumed that the density of the mixture depends linearly on the temperature and concentration
of the light component: ρ = ρ0(1 − β1T − β2C). Here ρ0 is the density of the mixture for the average values of the
temperature and concentration, T and C are small deviations from the average values, β1 is the thermal-expansion
coefficient of the mixture, and β2 is the density concentration coefficient (β2 > 0 since C is the concentration of the
light component). The motion of the mixture is described by the system [1]

ut + (u · ∇)u = −(1/ρ0)∇p + ν∆u − g(β1T + β2C),

Tt + u · ∇T = χ∆T,

Ct + u · ∇C = d ∆C + αd ∆T,
(1)

div u = 0,

where u is the velocity, p is the pressure deviation from the hydrostatic value, ν are χ are the kinematic viscosity and
thermal diffusivity of the mixture, respectively, d is the diffusion coefficient, α is the thermal-diffusion parameter,
and g is the free-fall acceleration. It is assumed that all characteristics of the medium are constant and correspond
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to the average values of the temperature and concentration. In the case of normal thermal diffusion, we have α < 0,
and for anomalous thermal diffusion, α > 0.

In the literature there are a number of papers dealing with constructing exact solutions of system (1) and
studying their stability. In particular, the stability of convective flows of a binary mixture in a vertical channel in
the presence of longitudinal concentration and (or) temperature gradients ignoring thermal diffusion was studied
in [2, 3]. The effect of thermal diffusion on the stability of a vertical layer with a constant temperature difference
between the walls was investigated in [4, 5] (in the layer there was also a longitudinal concentration gradient).
The instability of a plane horizontal layer of an incompressible binary gas mixture subjected to a time-dependent
transverse temperature gradient was studied in [6].

The group properties of Eqs. (1) in the case g = 0 were studied in [7], where an exact invariant solution was
constructed that describes the motion of two mixtures with a common interface. However, a systematic study of
the examined system using group analysis methods has not been performed. An exception is a paper [8], in which
a group analysis of the three-dimensional equations (1) was performed.

In the present paper, we consider the case of plane motion, for which it is necessary to set x = (x1, x2),
u = (u1, u2), and g = (0,−g), where g is the acceleration of gravity. The group properties of the corresponding
equations (1) are studied, and the invariant solutions are classified (optimal systems of subalgebras are constructed).
Examples of the exact invariant solutions are given, and their physical interpretation is analyzed. It is shown that
the solutions describe thermal diffusion in an inclined layer with a free boundary and in a vertical layer with solid
walls.

1. Group Properties of the Equations of the Model. We consider the problem of finding a transfor-
mation group that does not change system (1). In Lie theory, each transformation group is put in correspondence
to a Lie algebra of differential operators. Calculations show that the two-dimensional equations (1) admit the Lie
algebra L that is represented as the semidirect sum L = L4 ⊕ L∞. The finite-dimensional subalgebra L4 is formed
by the operators

X1 =
∂

∂t
, X2 =

1
β1

∂

∂T
− 1

β2

∂

∂C
, X3 = ρ0gx2 ∂

∂p
+

1
β2

∂

∂C
,

X4 = 2t
∂

∂t
+ x1 ∂

∂x1
+ x2 ∂

∂x2
− u1 ∂

∂u1
− u2 ∂

∂u2
− 2p

∂

∂p
− 3T

∂

∂T
− 3C

∂

∂C
,

(2)

and the infinite-dimensional ideal L∞ has the basis

H1(f1(t)) = f1(t)
∂

∂x1
+ f1

t (t)
∂

∂u1
− ρ0x

1f1
tt(t)

∂

∂p
,

H2(f2(t)) = f2(t)
∂

∂x2
+ f2

t (t)
∂

∂u2
− ρ0x

2f2
tt(t)

∂

∂p
,

H0(f0(t)) = f0(t)
∂

∂p
,

where f i(t) (i = 0, 1, 2) are arbitrary smooth functions. If the constants included in the system are linked by the
relation α = β1(d − χ)/(β2d) (d �= χ), the equations also admit the operator

X5 = T
∂

∂T
− β1

β2
T

∂

∂C
.

Below, it is assumed that this relation does not hold and that the operator X5 is not admitted. System (1) also has
discrete symmetries

d1: x̃1 = −x1, ũ1 = −u1,

d2: x̃2 = −x2, ũ2 = −u2, T̃ = −T, C̃ = −C.
(3)

2. Optimal Systems of Subalgebras. It is known that to seek substantially different invariant solutions
(with respect to the action of the admissible transformation group), it is necessary to construct optimal systems of
subalgebras for the corresponding Lie operator algebra [9–11]. We construct such systems for the Lie algebra L.
The optimal system of subalgebras of order k for the algebra L is denoted by ΘkL.
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TABLE 1
Optimal System of Subalgebras ΘL4

i Basis Pi Nor Pi i Basis Pi Nor Pi

1 1, 2, 3, 4 = 1 11 1, 4 = 11

2 1, 2, 3 1 12 2, 4 = 12

3 1, 2, 4 = 3 13 λ2 + 3, 4 = 13

4 2, 3, 4 = 4 14 1 1

5 1, λ2 + 3, 4 = 5 15 2 1

6 1, 2 1 16 λ2 + 3 1

7 2, 3 1 17 1 + 2 2

8 1, λ2 + 3 1 18 1 + λ2 + 3 2

9 1 + 2, λ1 + 3 2 19 4 = 19

10 1 + 3, 2 2 20 0 1

Note. The “=” sign denotes self-normalized subalgebras.

As a first step, we construct the optimal system for the finite-dimensional algebra L4 using its decomposition
into the semidirect sum L4 = J ⊕N of the eigenideal J = {X1, X2} and the subalgebra N = {X3, X4}. The optimal
system ΘL4 is given in Table 1. The first column gives the subalgebra numbers. The second column gives the
subalgebra bases, which are written symbolically using the corresponding operator numbers. The notation λ2 + 3
means λX2 + X3, etc; the constant λ takes any real values. The third column gives the subalgebra normalizer
number in L4 (the equality sign indicates the self-normalized subalgebras). In constructing the optimal system, we
take into account the automorphisms generated by the discrete symmetries (3).

As a second step, we construct the optimal first- and second-order systems for the algebra L which is
infinite-dimensional. The operator of the general form belonging to the ideal L∞ is written as

H(f) = H1(f1) + H2(f2) + H0(f0), f(t) = (f1(t), f2(t), f0(t)).

To construct Θ1L, it is necessary to classify the subalgebras from the following two classes:

1) {H(f)};
2) {P + H(f)}, {P} ∈ Θ1L4.

The first class lies in the ideal L∞, and the second has zero intersection with this ideal. The subalgebras with the
basis operator P are taken from the optimal first-order system Θ1L4 (see Table 1). The finding of Θ2L reduces to
classifying the subalgebras from the following three classes:

1) {H(f), H(g)};
2) {P + H(f), H(g)}, {P} ∈ Θ1L4;

3) {P + H(f), Q + H(g)}, {P, Q} ∈ Θ2L4.

Here the first class belongs to the ideal L∞, and the second and third classes have one-dimensional and zero
intersections with the ideal L∞, respectively. The subalgebras {P, Q} are taken from the optimal second-order
system Θ2L4.

The optimal system Θ1L is given in Table 2. The invariant solutions are constructed using the finite-
dimensional subalgebras from the optimal second-order system Θ2L, which are given in Table 3. The bases of the
subalgebras are indicated in the second column. The constants λ, µ, γ, and δ take any real values unless otherwise
specified.

3. Construction of the Exact Solutions. We consider examples of the invariant solutions constructed
for the subalgebras from the optimal system Θ2L (see Table 3). The use of two-dimensional subalgebras reduces
integration of the constitutive system to solution of ordinary differential equations. Below, we use the standard
notation of the coordinate vectors x = (x, y) and velocity u = (u, v).
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TABLE 2
Optimal System of Subalgebras Θ1L

i Basis Note

1 X1

2 X1 + X2
—

3 X1 + λX2 + X3

4 X4

5 H0(f0) f0 �≡ 0

6 X2 + H0(f0) f0 �≡ 0

7 H1(f1) + H2(f2)

8 X2 + H1(f1) + H2(f2) —
9 λX2 + X3 + H1(f1) + H2(f2)

Example No. 1. We consider subalgebra 4 with the basis

X1 =
∂

∂t
, H1(1) + H2(λ) =

∂

∂x
+ λ

∂

∂y
.

The corresponding invariant solution has the form

u = u(ξ), v = v(ξ), p = p(ξ), T = T (ξ), C = C(ξ), ξ = y − λx.

Substituting this solution into system (1), from the continuity equation we have v = λu + v0, where v0 = const. If
v0 = 0, the required functions satisfy the system

ν(λ2 + 1)2uξξ + λg(β1T + β2C) = 0, pξ + (ρ0ν/λ)(λ2 + 1)uξξ = 0, Tξξ = Cξξ = 0,

which is easily integrated:

u = − λg

6ν(λ2 + 1)2
(
(β1c1 + β2c3)ξ3 + 3(β1c2 + β2c4)ξ2

)
+ c5ξ + c6, v = λu,

p =
ρ0g

2(λ2 + 1)

(
(β1c1 + β2c3)ξ2 + 2(β1c2 + β2c4)ξ

)
+ c7, (4)

T = c1ξ + c2, C = c3ξ + c4, ξ = y − λx.

Here c1, . . . , c7 are arbitrary constants. Below, we use the same notation for arbitrary constants.
Example No. 2. We consider subalgebra 29 with the basis

X1 =
∂

∂t
, λX2 + X3 ± H2(1) =

λ

β1

∂

∂T
+

1 − λ

β2

∂

∂C
+ ρ0gy

∂

∂p
± ∂

∂y
.

The invariant solution in this case is written as

u = U(x), v = V (x), p = P (x) ± ρ0g

2
y2, T = T̃ (x) ± λ

β1
y, C = C̃(x) ± 1 − λ

β2
y.

Substituting the solution into the constitutive system, from the continuity equation we have U = U0 = const.
Then, from the first equation of system (1) it follows that p = p0 = const. Subsequently, the case U0 = 0, λ �= 0 is
considered. The new unknown functions satisfy the system

νVxx + g(β1T̃ + β2C̃) = 0; (5)

χT̃xx ∓ λV/β1 = 0; (6)

dC̃xx + αdT̃xx ∓ (1 − λ)V/β2 = 0. (7)

We express the function V from (6) and substitute it into Eqs. (5) and (7). Then, double integration of d Eq. (7)
yields

T̃xxxx ± λg(β1T̃ + β2C̃)/(β1νχ) = 0; (8)

C̃ =
(
β1χ(1 − λ)/(β2dλ) − α)T̃ + c̃1x + c̃2. (9)
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TABLE 3
Finite-Dimensional Subalgebras from the Optimal System Θ2L

i Basis Note

1 X1, H0(1) —

2 X1, H2(1) —

3 X1, H1(1) + H0(1) —

4 X1, H1(1) + H2(λ) λ ≥ 0

5 X1, H0(e±t) —

6 X1, H2(e±t) —

7 X1, H1(e±t) + H2(λ e±t) λ ≥ 0

8 X1 + X2, H0(1) —

9 X1 + X2, H1(1) + H0(λ) λ ≥ 0

10 X1 + X2, H1(λ) + H2(1) λ ≥ 0

11 X1 + λX2, H0(e±t) λ > 0

12 X1 + λX2, H2(e±t) λ > 0

13 X1 + λX2, H1(e±t) + H2(µ e±t) λ > 0, µ ≥ 0

14 X1 + λX2 + X3, H1(1) + H0(µ) µ ≥ 0

15 X1 + λX2 + X3, H1(µ) + H2(1) + H0(ρ0gt) µ ≥ 0

16 X1 + λX2 + µX3, H0(e±t) µ > 0

17 X1 + λX2 + µX3, H1(e±t) µ > 0

18 X1 + λX2 + µX3, H1(δ e±t) + H2(e±t) + H0(µρ0gt e±t) µ > 0, δ ≥ 0
19 X4, H0(tγ ) —

20 X4, H2(tγ ) γ �= 1/2

21 X4, H1(tγ) + H2(λtγ ) γ �= 1/2, λ ≥ 0

22 X4, H2(
√

t) + H0(λ/t) λ ≥ 0

23 X4, H1(
√

t) + H2(µ
√

t) + H0(λ/t) λ ≥ 0, µ ≥ 0

24 X1, X2 —

25 X1, X2 + H0(1) —

26 X1, X2 + H1(1) + H0(λ) λ ≥ 0

27 X1, X2 + H1(λ) ± H2(1) λ ≥ 0

28 X1, λX2 + X3 —

29 X1, λX2 + X3 ± H2(1) —

30 X1, λX2 + X3 + H1(1) + H2(µ) —

31 X1 + X2, λX1 + X3 + H1(µ) + H2(δ) µ ≥ 0

32 X1 + X3, X2 + H1(λ) + H0(µ) λ ≥ 0

33 X1 + X3, X2 + H1(λ) + H2(µ) + H0(µρ0gt) λ ≥ 0, µ �= 0

34 X1, X4 —

35 X2 + H0(λ
√

t), X4 λ > 0

36 X2 + H1(λt2) + H2(µt2), X4 λ ≥ 0

37 λX2 + X3 + H2(4gt2/9) + H0(µ
√

t), X4 µ > 0
38 λX2 + X3 + H1(µt2) + H2(δt2), X4 µ ≥ 0
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Substitution of the function C from (9) into (8) gives

T̃xxxx ± g(β1(λd + (1 − λ)χ) − β2λαd)
β1νχd

T̃ ± β2gλ

β1νχ
(c̃1x + c̃2) = 0. (10)

The coefficients at T̃ in (10) are denoted by

a = ±g(β1(λd + (1 − λ)χ) − β2λαd)/(β1νχd).

Equation (10) has three different solutions for the cases a < 0, a > 0, and a = 0 [8].The functions V and C̃ are
determined from Eqs. (6) and (9), respectively.

Case 1: a < 0. Setting γ = ± 4
√−a, we write the solution of the constitutive system as follows:

u = 0, v = ±(β1χγ2/λ)(c3 cosh γx + c4 sinh γx − c5 cos γx − c6 sin γx), p = p0 ± ρ0gy2/2,

T = c3 cosh γx + c4 sinh γx + c5 cos γx + c6 sinγx + β2(c1x + c2) ± (λ/β1)y, (11)

C =
(β1χ(1 − λ)

β2λd
− α

)
(c3 cosh γx + c4 sinh γx + c5 cos γx + c6 sin γx) − β1(c1x + c2) ± 1 − λ

β2
y.

The new constants c1 and c2 are defined by the formulas

ci = − λd

β1(λd + (1 − λ)χ) − β2λαd
c̃i, i = 1, 2. (12)

Case 2: a > 0. Setting γ = ± 4
√

a/4, we obtain the following representation of the solution of the constitutive
system:

u = 0, p = p0 ± ρ0gy2/2,

v = ±(2β1χγ2/λ)(c4 sinh γx cos γx − c3 sinh γx sin γx + c6 cosh γx cos γx − c5 cosh γx sinγx),

T = c3 cosh γx cosγx + c4 cosh γx sin γx + c5 sinh γx cos γx + c6 sinh γx sin γx + β2(c1x + c2) ± λy/β1,

(13)

C = (β1χ(1 − λ)/(β2dλ) − α)(c3 cosh γx cos γx + c4 cosh γx sin γx + c5 sinh γx cos γx + c6 sinh γx sin γx)

− β1(c1x + c2) ± (1 − λ)y/β2.

In this case, the constants are also changed by formula (12).
Case 3: a = 0. In this case, the solution has the form

u = 0, v = (β1(χ − d) + β2αd)
( c5

6
x3 +

c4

2
x2 ± c3x ± c2

)
, p = p0 ± ρ0g

2
y2,

T = ± c5

120
x5 ± c4

24
x4 +

c3

6
x3 +

c2

2
x2 + c1x + c0 ± χ

β1(χ − d) + β2αd
y,

C = −β1

β2

(
± c5

120
x5 ± c4

24
x4 +

c3

6
x3 +

c2

2
x2 + c1x + c0

)
−

(14)

− ν(β1(χ − d) + β2αd)
gβ2

(c5x + c4) ± d(αβ2 − β1)
β2(β1(χ − d) + β2αd)

y.

Here the new constants c5 and c4 are defined by the formulas

c5 = − gβ2

ν(β1(χ − d) + β2αd)
c̃1, c4 = − gβ2

ν(β1(χ − d) + β2αd)
c̃2.

Example No. 3. We consider subalgebra 6, whose basis operators are written as

X1 =
∂

∂t
, H2(e±t) = e±t ∂

∂y
± e±t ∂

∂v
− ρ0 e±t y

∂

∂p
.

Here the invariant solution is represented as

u = U(x), v = V (x) ± y, p = P (x) − ρ0y
2/2, T = T (x), C = C(x).
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Substituting the given solution into the constitutive system, from the continuity equation we find the velocity
U = ∓(x + c1), where c1 is an arbitrary constant. Then, from the first equation of system (1), we obtain the
function P in the pressure expression:

P (x) = −ρ0x
2/2 − c1ρ0x + c2.

The remaining functions satisfy the system

νVxx ± (x + c1)Vx ∓ V + g(β1T + β2C) = 0; (15)

χTxx ± (x + c1)Tx = 0; (16)

dCxx ± (x + c1)Cx + αdTxx = 0. (17)

We introduce the function

F∓(x, a) =

(x+c1)/
√

2a∫

0

exp (∓s2) ds.

System (16), (17) is integrated (see [12]):

T = c3 + c4F
∓(x, χ), C = c5 + c6F

∓(x, d) + αdT/(χ − d). (18)

Next, we seek a solution of the homogeneous equation (15), which according to [12], is written

V = c7[exp (∓(x + c1)2/(2ν)) ±
√

2/ν (x + c1)F∓(x, ν)] + c8(x + c1)/
√

2ν.

The solution of the corresponding inhomogeneous equation is found by substitution of expressions (18) into (15).
As a result, we obtain an example of the exact solution of system (1) in the form

u = ∓(x + c1),

v = c7[exp (∓(x + c1)2/(2ν)) ±
√

2/ν (x + c1)F∓(x, ν)] + c8(x + c1)/
√

2ν

+ g(β1(χ − d) + β2αd)(±c3 − c4G(x, χ))/(χ − d) + β2g(±c5 − c6G(x, d)) ± y, (19)

p = −ρ0(x2 + y2)/2 − c1ρ0x + c2, T = c3 + c4F
∓(x, χ), C = c5 + c6F

∓(x, d) + αdT/(χ − d).

Here

G(x, a) =
[x + c1√

νa
F∓(x, ν) ± 1√

2a
exp

(
∓ 1

2ν
(x + c1)2

)] x∫

−c1

exp
(
±a − ν

2νa
(τ + c1)2

)
dτ

− x + c1√
νa

x∫

−c1

exp
(
±a − ν

2νa
(τ + c1)2

)
F∓(τ, ν) dτ ∓ F∓(x, a).

4. Physical Interpretation of the Solutions. We give a possible physical interpretation of the solutions
obtained in example Nos. 1 and 2 from Sec. 3. The interpretation of solution (19), found in example No. 3 is
difficult.

Thermal Diffusion in an Inclined Layer. We consider solution (4), in which all unknown functions remain
constant on the straight lines ξ = y−λx = const. Let a liquid layer of thickness h be located at an angle 0 ≤ ϕ < 90◦

to the horizon. From below and from above, the liquid is bounded by a heated solid wall and a free boundary,
respectively; they are straight lines with a normal unit vector n (Fig. 1). It is assumed that in any cross section of
the layer there is a constant temperature difference Θ between the solid wall and the free boundary. On the wall
y − x tan ϕ = 0, we impose the conditions of attachment and absence of material flow and specify the temperature
distribution:

u = v = 0, −d
(∂C

∂n
+ α

∂T

∂n

)
= 0, T = Θ.
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Fig. 1. An inclined layer of a liquid.

On the free boundary, y − x tan ϕ = h/ cosϕ, the following kinematic and dynamic conditions should be satisfied:

u tan ϕ − v = 0, ((p − pg)E − 2νρ0D(u))n = 2σHn + ∇Γσ. (20)

Here pg is the pressure on the free boundary, E is the unit matrix, D(u) is the strain-rate tensor, σ = σ(T, C) is
the Surface-tension coefficient, H is the mean curvature of the free surface, and ∇Γ = ∇− n(n · ∇) is the surface
gradient. Since in solution (4), the temperature and concentration on the free boundary are constant, the surface
gradient in (20) is equal to zero. The free surface is a straight line; therefore H = 0. Here the kinematic condition
is satisfied identically. In addition, on the free boundary, the temperature distribution is specified and the condition
of no material flow through the boundary is imposed:

T = 0, −d
(∂C

∂n
+ α

∂T

∂n

)
= 0.

We specify the average concentration in the cross section and assume that it remains constant along the layer.
Then, the function C, which defines the deviations from the average values, should obey the condition

h∫

0

C dγ = 0, γ: y tan ϕ + x = 0.

To determine the unknown constants, we write solution (4) and the boundary conditions in nondimen-
sional form. Introducing the characteristic scales of time h2/ν, distance h, velocity gβ1Θh2/ν, pressure ρ0ghβ1Θ,
temperature Θ, and concentration β1Θ/β2, we write Eq. (1) in dimensionless variables:

ut + Gr (u · ∇)u = −∇p + ∆u + q(T + C),

Tt + Gr (u · ∇T ) = ∆T/Pr ,

Ct + Gr (u · ∇C) = (∆C − ε∆T )/Sc,

div u = 0,

where q = (0, 1). The system contains four dimensionless parameters — the Grashof number Gr = gβ1Θh3/ν2, the
Prandtl number Pr = ν/χ, the Schmidt number Sc = ν/d, and the parameter ε = −αβ2/β1, which determines the
thermal diffusion effect.

Since the solution considered depends on one variable, it is convenient to introduce the z axis perpendicular
to the layer and to write the quantities as functions of the z coordinate. Solution (4) which satisfies the boundary
conditions is written in the dimensionless variables as follows:

u′ = sin ϕ(2(ε + 1)z3 − 3(ε + 2)z2 + 6z)/12,

p = cosϕ(−(ε + 1)z2 + (ε + 2)z − 1)/2 + p′g, T = −z + 1, C = ε(−z + 1/2).
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Fig. 2. Velocity profiles in an inclined layer for various values of the thermal-diffusion parameter:
ε = 0 (1), 1 (2), 2 (3), and 3 (4).

Fig. 3. Vertical layer.

Here the function u′ = u/ cosϕ defines the velocity profile in the cross section, p′g = pg(ρ0ghβ1Θ)−1. Figure 2
gives velocity profiles for various values of the thermal-diffusion parameter at an inclination angle of ϕ = 30◦.
The straight line z = 0 corresponds to the solid wall, and z = 1 to the free boundary. In the absence of thermal
diffusion (curve 1), the liquid rises up along the layer as a result of the temperature difference between the wall and
the free boundary. In the case of anomalous thermal diffusion, the parameter ε < 0 and the light component are
concentrated at the cold free boundary. As a result, the rate of rise of the liquid increases but its profile is similar
to the velocity profile for ε = 0. For ε > 0, normal thermal diffusion takes place. The light component diffuses
toward the heated wall, and the heavier component toward the cold boundary. This results in a decrease in the
velocity (curve 2). For ε = 2 (curve 3), the velocity on the free boundary vanishes. With a further increase in the
thermal-diffusion parameter, the concentration of the heavier component at the free boundary grows. Under the
action of gravity, the liquid starts moving downward, but at the wall, the opposite direction of motion (curve 4) is
preserved.

Thermal Diffusion in a Vertical Layer. We consider solution (11), (13), (14) and give its possible physical
interpretation. Let a vertical fluid layer of thickness 2h be enclosed between two solid walls with a unit normal
vector n (Fig. 3).The conditions of attachment and no material flow through the wall are imposed on the walls,
and a linear temperature distribution is specified on the y coordinate. It is assumed that in any cross section there
is a constant temperature difference 2Θ. Thus, the conditions on the walls x = ±h has the form

u = v = 0, T = Ay ± Θ, −d
(∂C

∂n
+ α

∂T

∂n

)
= 0. (21)

In addition, it is postulated that the flow is closed and the vertical concentration gradient is constant:
h∫

−h

v dx = 0, lim
l→∞

1
2l

l∫

−l

∂C

∂y
dy = B. (22)

Conditions (21) and (22) are written in dimensionless form

x = ±1: u = v = 0, T =
Ra

GrPr
y ± 1,

∂C

∂x
− ε

∂T

∂x
= 0,

1∫

−1

v dx = 0, lim
l→∞

1
2l

l∫

−l

∂C

∂y
dy =

Rad

GrSc
.
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Here we use the same dimensionless variables as in the previous example but introduce two new dimensionless pa-
rameters — the Rayleigh number Ra = gβ1Ah4/(νχ) and the Rayleigh concentration number Rad = gβ2Bh4/(νd).
These numbers are determined from the vertical temperature and concentration gradients, respectively.

To satisfy the specified boundary conditions, the solution considered is subjected to an expansion transfor-
mation specified by the operator X4 from (2). This allows us to introduce an independent real parameter into the
solutions that defines the coefficient at y in the concentration expressions [see (11) and (13)].

In the dimensionless variables, the parameter a, which defines the type of solution, becomes a′ = Ra (ε
+ 1) + Rad. We write a solution that satisfies the specified boundary conditions for all three cases.

Case 1: Ra (ε + 1) + Rad < 0. The solution of system (1) is given by the formulas

u = 0, v =
(ε + 1)γ2

S

[sinh γx

sinh γ
− sinγx

sin γ

]
, p = p0 +

1
2

[ Ra
GrPr

+
Rad

GrSc

]
y2,

T =
(ε + 1)Ra

S

[sinh γx

sinh γ
+

sinγx

sin γ

]
+

γ Rad

S
(cot γ + coth γ)x +

Ra
GrPr

y,

C =
(ε + 1)(Ra ε + Rad)

S

[sinh γx

sinh γ
+

sin γx

sin γ

]
− γ Rad

S
(cot γ + coth γ)x +

Rad

GrSc
y,

(23)

γ = 4
√
−Ra (ε + 1) − Rad, S = 2 Ra (ε + 1) + γ Rad (cot γ + coth γ).

Case 2: Ra (ε + 1) + Rad > 0. The required functions are written as

u = 0, v =
4(ε + 1)γ2

S
(sin γ cosh γ cos γx sinh γx − cos γ sinh γ sin γx cosh γx),

T =
2(ε + 1)Ra

S
(cos γ sinh γ cos γx sinh γx + sin γ cosh γ sin γx cosh γx)

+
γ Rad

S
(sin 2γ + sinh 2γ)x +

Ra
GrPr

y,

p = p0 +
1
2

[ Ra
GrPr

+
Rad

GrSc

]
y2, (24)

C =
2(ε + 1)(Ra ε + Rad)

S
(cos γ sinh γ cos γx sinh γx + sin γ cosh γ sinγx cosh γx)

− γ Rad

S
(sin 2γ + sinh 2γ)x +

Rad

GrSc
y,

γ = 4

√
Ra (ε + 1) + Rad

4
, S = Ra (ε + 1)(cosh 2γ − cos 2γ) + γ Rad (sin 2γ + sinh 2γ).

Case 3: Ra (ε + 1) + Rad = 0. The solution of the constitutive system is represented as

u = 0, v =
15(ε + 1)

2 Ra (ε + 1) − 90
(x3 − x), p = p0 +

Ra
2GrPr

(
1 − Pr

Sc
(ε + 1)

)
y2,

T =
Ra (ε + 1)

8 Ra (ε + 1) − 360
(3x5 − 10x3 + 15x) − 45

Ra (ε + 1) − 45
x +

Ra
GrPr

y, (25)

C = − Ra (ε + 1)
8 Ra (ε + 1) − 360

(3x5 − 10x3 + 15x) − 45ε

Ra (ε + 1) − 45
x − Ra (ε + 1)

GrSc
y.

From the above formulas one can see that for ε = −1, the velocity vanishes and the temperature and
concentration distributions become linear on the x coordinate. Therefore, mechanical equilibrium can occur in the
system. In addition, in the first and second cases, it is possible to choose temperature and concentration gradients
(or the corresponding Rayleigh numbers Ra and Rad) such that the pressure in the layer is constant with accuracy
to the hydrostatic pressure.
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Fig. 4. Velocity (a), temperature (b), and concentration (c) profiles in the vertical layer for
various values of the thermal-diffusion parameter: ε = 1.5 (1), 0 (2), −1.1 (3), and −2.5 (4).

The velocity, temperature, and concentration profiles in the cross section y = 0 for various values of the
thermal-diffusion parameter are given in Fig. 4. These profiles correspond to the Rayleigh numbers Ra = 300 and
Rad = 0. The functions v, T , and C for y = 0 are uniquely determined by specifying the indicated parameters.

In the absence of thermal diffusion (curve 2), the liquid rises up at the heated boundary and goes down at
the cold boundary. In this case, the concentration (C = 0) is homogeneous. For ε > 0, normal thermal diffusion
occurs and the light component diffuses toward the heated boundary. This results in an increase in the velocity
(curve 1). For negative values of the parameter, anomalous thermal diffusion takes place. The light component
moves toward the cold boundary, as a result of which the velocity of motion decreases. For ε = −1, mechanical
equilibrium sets in. A further decrease in the thermal-diffusion parameter leads to inversion of the velocity profile
(curve 3). The concentration of the light component at the cold boundary becomes high enough, so that near this
boundary the liquid begins to rise up, and near the heated boundary, it goes down. As the parameter decreases
further, inversion of the velocity profile is observed again (curve 4). Directly near the cold and heated boundaries,
the liquid moves up and down, respectively, and in the middle of the layer, the direction of its motion becomes
opposite. In this case, considerable temperature and concentration inhomegeneities in the layer are observed.
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Solutions (23)–(25) extend the well-known solutions of the convection equations for a homogeneous liquid [1]
and for a binary mixture [2–5] to the case of thermal diffusion of a mixture under various boundary conditions (the
presence or absence of longitudinal temperature or concentration gradients and their various directions).

Conclusions. The group properties of the thermal-diffusion equations for a binary mixture are studied in
the plane case. The admissible Lie operator algebra and the corresponding transformation group, which is infinite-
dimensional, were found. The optimal first]- and second-order systems of subalgebras were constructed (the invariant
solutions are classified). Examples of the exact solutions invariant with respect to the two-dimensional subalgebras
from the optimal system were given. The search for such solutions reduces to integrating systems of ordinary
differential equations. A physical interpretation of the results is proposed. The exact solutions describing thermal
diffusion in an inclined layer with a free boundary and in a vertical layer in the presence of longitudinal temperature
and concentration gradients were found. The effect of thermal diffusion on the flow regime was investigated.

We thank V. K. Andreev for the formulation of the problem and constant attention to the work.
This work was supported by the foundation the “Leading Scientific Schools of Russia” (Grant No. NSh-
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